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ON A WIDE RANGE EXCLUSION PROCESS IN RANDOM MEDIUM WITH

LOCAL JUMP INTENSITY

by

E. Platen"

Karl-Weierstrass-Institute of Mathematics

Academy of Sciences of the GDR

Mohrenstr. 39, Berlin, DDR-1086

and

Center for Stochastic Processes

Department of Statistics

University of North Carolina

Chapel Hill, NC 27599-3260

Summary:

The paper investigates the macroscopic nonequilibrium

dynamics of a wide range exclusion process in random

medium. Based on a law of large numbers and the specific

properties of the exclusion dynamics it is shown under

suitable assumptions that the particle concentration

follows a nonlinear evolution equation.

Key words: exclusion process

interacting-particle system

noneq.ilibrium dynamics

nonlinear evolution equation
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I. Zntroduction

The exclusion process was introduced by Spitzer in /10/.

Comprehensive treatments of this interacting particle

system are given in /7/ and /1/.

In the exclusion model the particles attempt to move

independently according to a Markov kernel on a given

countable set of sites. But any jump which would take a

particle to an already occupied site is suppressed. That

means there is always at most one particle per site.

This paper is a continuation of /6/ where we considered

the so called wide range birth and death exclusion process

in random medium. We proved in /8/ a law of large numbers

for this measure valued process and derived a

deterministic macroscopic equation describing the

evolution of the occupation rate of the sites. This

macroscopic equation holds under rather general

conditions. It can bes.pecified by the choice of the

Markov kernel, this means by the given Jump intensity of

the particles.

Within this paper we will study the case of a nonsymmetric

local jump intensity which allows only jumps into the

neighborhood. For instance, such Jump intensity is of

interest In modelling of stochastic charge transport (sce

/9/1.

In the following we will show under suitable assumptions

that the asymptotics with respect to vanishing mean jump

- . m b i iil il a gi a I



-3-

size yields a nonlinear second order partial differential

equation characterizing the evolution of the limiting

particle concentration. This equation represents a

continuity equation, where physical quantities as current

density vector, conductivity, static potential and

chemical potential can be easily identified. It seems that

this continuity equation models important transport

processes in physics, chemistry, biology, electronics,

social sciences and other fields.

The first part of the paper generalizes the birth and

death exclusion process introduced in /8/. It formulates a

law of large numbers for the case that the mean number of

sites per unit volume tends to infinity. The second part

derives the evolution equation for the limiting particle

concentration.

2. Exclusion process

2.1. Randon medium

In the following we will introduce a generalization of the

wide range birth and death exclusion process considered in

/8/. -

For unexplained notations and definitions we refer to /4/

or /5/.

Let (j2,F,P) denote the basic complete probability space. S

F (F) is an increasing right-continuous family of

=t tZS
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complete sub-& -fields of F.

Further, B(E) represents the Borel-6 -algebra of a

topological space E.

The sites are located in a closed bounded domain UR

do (1,2,... I

We introduce a finite 6 -additive measure A on B(6) which

is called intensity measure of sites.

(N ) denotes a sequence of =F -measurable simple

counting measures on B(O), the so called counting measures

of sites.

The parameter

(2.1.1) n=E N n (Q)( $ dq)

can be interpreted as the mean number of sites per unit

volume.

For K e (0, oo ) we denote by g,, the set of bounded

Lipschitz-continuous functions fId -> [-K,K ]with

(2.1.2) 1f(u)-f (q) I Kjq-u I

for all u,q f 0, using the usual Euclidean norm. Now we
0

assume that for each KC(O,oo) it holds

(2.1.3) lim E sup (S f(q)(I N -A)(dq)) 0,

n->oa f Cg<

and for all n>l we have

: ~lilJJJ Jl" il IIII iI III I i
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(2. 1.4) E(I N (Q)) K i, 0• M 0

The counting measure Nn represents the random medium

within our microscopic stochastic model The above

conditions are satisfied for a wide class of regular

lattices and other point processes including the Poisson

point process (see /8/).

2.2. Harkovian jump nechanis

We denote by L,,t the counting measure of particles at
6i

time t O.

Further, we introduce an F-adapted cadlag Poisson counting

measure/A, on B([O,- ))a B(O)e B(O) which is characterized

by its dual predictable projection which is here its

intensity measure

(2.2.1) *,(dr,du,dq)=n w (u,q)N,(du)Nn(dq)dt.

We assume that the jump'rate wj (u,q) is nonnegative and

Lipschitz-continuous with respect to u and q uniformely

with respect to t.

The counting measure , generates the so called possible

jumps of particles. But only jumps from occupied into

vacant sites will take place. Therefore, we will have at

most one particle at each site.

2.3. Birth and death of particles

We include in our microscopic stochastic model also the

.. ... ..... --- --- -- -- - , retil, m i I m ro l m mm1
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effects of birth and death of particles.

The possible birth or death, resp., of particles is

generated by the F-adapted cadlag Poisson counting

measures/A and/4_. , resp., which are defined on B( C 0,oO))

B(d) and characterized by their dual predictable

projections

(2.3.1) 'n (dtdu) = ;; (u) N (du)dt

and

(2.3.2) (dt,du) = w f(u) Nn (du)dt

resp. The birth rate W (u) and death rate w. (u) are

assumed to be nonnegative bounded and Lipschitz-continuous

with respect to ue Q uniformely with resprect to t.

Furthermore, we suppose that and ,are independent.

A birth (death, resp.,) at u at time t will take place
0

only if u is vacant (occupied, resp.) at this time. So

also in the case of a bir-th or death it is ensured that we

have at most one particle at each site.

2.4. Initial condition

The function YID -> [0,i] denotes the initial occupation

rate of the sites. We assume that at time t=O at most one S

particle is at each site, L is F -measurable and for

all K e (O,co) it holds

(2.4.1) lim E sup (f f(q)( ( L 0 - (q)iA ) (dq)) -0.
n->oo f_ K

K0
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2.5. Stochastic equation

Let or, denote the Dirac measure at ut Q and L the left

hand limit of the measure of particles at time t>O.

Now we can define the measure valued exclusion process

Lo= f Ln I; o as unique solution of the following

stochastic equation (see /8/)

(2.5.1) Ln' t  L,. 0  +
- -i

+j/ (r L,,_ ({Uj)(I-L S(fqj)) (ds,du,dq)

-'s V), Ms-

t

-f , (/ L JMJ- u ):x. q) ( s, d)

oD
i~f~ 5 (fu}),g(ds,du),

I'I

which describes the evolution of L. driven by// ,/,p

and One easily notes how the F-adapted cadlag.

piecewise constant and Markovian measure valtted process L n

remains at any time t with at most one particle at each

site. Furthermore, theinteraction between the particles

caused by the exclusion mechanism is reflected by the

logistic nonlinearity L (I-L.) within the second term of

the right hand side of equation (2.5.1).

2.6. Occupation rate

Let 0 denote the support of the intensity measure of

sitesA.Now, for t-!O and qc Q we introduce the so called

occupation rate H(t,q) which we will later interpret as

the probability that a site at qeQ is occupied at time t.

We define the occupation rate H as the unique solution

.0
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(see /8/) of the following integro-differential equation

(2.6.1) - Hlt,q)=(1-H(t,q)lfwf (u,q)H(t,u)/Lldu) ;i (q))

H(t,q)(Jw I(q,u)(1-H(t,u))/1(du)+wt (q))

for all t>O, qfQ, with initial condition:

(2.6.2) H(O,q)= f(q),

forall qEQ. It can be shcwn as in /8/ that we have for all

t1O and qfQ

(2.6.3) H(t,q) C [0,13.

Equation (2.6.1) is a bilance equation for the macroscopic

evolution of the occupation rate and allows the following

interpretation: The occupation rate changes its value in

dependence on the occupation rate at other points. It

increases at qe 0 proportional to the non-occupation rate

(1-H(t,q)) and the sum pf the birth rate W(q) together

with the occupation rates H(t,u) for the sites at ufQ\ (q}

which are weighted by the intensity wf (u,q) for jumps from

these sites into q. On the other hand H(t,q) decreases

proportional to its own actual value and the sum of the

death rate wI(q) together with the non-occupation rates

(1-H(t,u) of the other sites at uf a\ {qJ which are

weighted by the intensity wj (q,u) for the jumps from q

into these sites.
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We remark, that Groeger proved in /3/ that a unique

solution exist for the bilance equation (2.6.1) together

with the Poisson equation describing the self consistent

static potential.

2.7. Law of large numbers

Now, we can formulate a law of large numbers for the above

introduced wide range exclusion process in random medium

for the case that the mean number n of sites per unit

volume tends to infinity, n ->0o

Theorem 2.7.1

Under the above assumptions it holds for fixed T,K c (O,v)

(2.7.2) lim E sup E('sup (ff (q)(CIL -H (t, q)A) (dq)J)2
n->oo f O-t T Q ,

The choice of the class of test functions CK and the

positioning of the --xpectations are cruical for the proof

of the theorem which uses semimartingale methods. It can

be omitted because it would be almost the same as that

which is given in /8/.

The above law of large numbers shows that the random

functional

f(q)! L (dq)

converges in the mean square sense uniformely with respect

0)
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to the time tE[O,T3 and all test functions f(C for n ->

to the deterministic functional

f 4(q)Hlt,q)/t (dq).

The inner conditional expectation in (2.7.2) relates to

the driving Poisson counting measures/ ',/ and,.i. The

remaining outer expectation averages the random medium and

the random initial occupation of the sites.

3. Asynptotics of the macroscopic nonequilibrium dynamics

3.1. Specifications for the case of a local jump intensity

For simplicity let us cho se the domain

(3.1.1) Q= (O, ])...x (O ld )

with

(3.1.2) li C (0,00)

for all i ( f I...,dj

0 is the boundary of Q and 0 denotes its closure.

Further, '0Q' is that part of Do which does not contain

corners or edges.

0 For i,jE fO,I,...} we denote by Ci the set of all i-times

continuous differentiable functions on Q, and C11 is the

set of all functions on [O,T] XQ which are i-times

continuous differentiable with respect to the first and j-

times with respect to the other coordinates, T 6 (0, -0
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We denote by V the outward unit normal of 0O' at q c)O, by

div a the divergence of a vector a, by a-e the usual

scalar product between two vectors a and e and by grad f

the gradient of a function f on f.

We assume that the intensity measure of sites is

absolutely continuous and we write for all qt 0,

(3.1.3) 
/ (dq) =;L (q)dq.

We suppose that there exists a version of the

concentration of sitesL with the properties

(3.1.4) )(q) -1 K. >0

for all q CQ, where

(3.1.5) F C

UJider this assumption we note that the support a of/.

coincides with 0. To formulate the local jump intensity we

introduce the Lipschitz-continuous probability density
S

(3.1.6) p(q)=exp f- q) (fexp" -lull du)

R0

for all qf R

We remark that the proposed approach would also work for

other probability densities if they show moment properties

as those listed in Section 4.1.

For each value of a parameter oZE(0,1) we specify the local

jump intensity for all t-O and u,qi Q by the expression

iimmm m i'mi~~m~mmmmmm0
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(3.1.7) w (u,q)='rr(t,q) -r(t,u)" p(I (u-q))O
t d

with

(3.1.8) IT(t,q) = exp - (t,q)] ,

where (t,q) is the so called static potential and we

assume

(3.1.9) _

We note that for smaller o the jump intensity w, is more

localized.

To interpret the jump intensity w we remark that one can

show by the use of the properties of the probability

density p listed in Section 4.1 that we have for qe 0 the

asymptotic drift vector

lim f (u-q)w (q,u)du = -b gradp (t,q)

and the asymptotic variation

lim f (u-q) w (q,u)du =bd,
c ->0 a

where b is a positive constant depending on d. For

instance we have for d=1 the value b=1/2 and for d=3 the

value b=-r .

Now, the occupation rate depends on the parameter oCC(0,1)

and we use in the following also the notation



(3.1.6 H(t, q) =H(t, q)

for all te [o,T)] and qgQ.

3.2. An integral quation

In the following we characterize the limiting dynamics of

the occupation rate H., for d-)0-. For this purpose we

assume that H., converges pointwise to a function

H [0,TjX5 -> (0,1)] such that

(3.2.1) lrn (HCO (t,q)-H(t,q))0O

a( ->0

for all t4C[0,T3Jand qQcl.

Further, we assume that the time derivative of the

occupation rate is uniformly bounded for all156(0,1),

tE f,Tjland qor Witt,

Finally, let us suppose that there exists a constant

such that f or al 1 4 6(0, 1), qe and +fr[0,] we have

That means the occupation rate is never 0 or 1.
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Let us denote by C the set of functions fE C with

(3.2.5) - f(q)=0

fo all qf VQ'-

Now, we are able to characterize H as solution of an

interesting integral equation.

Theorem 3.2.6

The limit 1R of the occupation rate H.C fore->0 satisfies

under the above assumptions for all f{ and te [O,T] the

integral equation

(3.2.7)f f(q) (H(t,q)-IR(0,q));L (q)dq0

=f/fi H(s,q)[div(2(q)grad f(q))
-;(q) (1-H(sq))grad f(q)gradi(s,q)]

+f(q) [ (1-H(s,qVJW (q)-H(s,q)wS(q)]J (q)J dq ds.

The proof of this theorem is given in Section 4.3.

Equation (3.2.7) gives a characterization of the limit H

which avoids smoothness assumptions on H. Therefore one

can say that (3.2.7) gives a rather weak description of H.

Under sufficient smoothness assumptions we will show

within the next section that H is the solution of a

corresponding nonlinear partial differential equation

which allows a direct interpretation of the dynamics
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already described by the equation (3.2.7).

3.3. Asymptotic occupation rate

We assume the initial condition

(3.3.1) H(0,.) e _

with

(3.3.2) -- (o,q)+TT(o,q) (1--f(o,q)).L (o,q)=0.

Now, we are going to introduce a function R on [0,T] xA

which we call asymptotic occupation rate. We suppose that

there exists a function Re C_ .1 which is the unique

solution of the nonlinear partial differential equation

(3.3.3) 2R(tq)=X (q) div( (q) (grad R(t,q)

+R(t,q) (l-R(t,q))grad (t,q)))

+(1-R(t,q))-9 (q)-R(t,q)wt (q)

for all t>O and qjS Q with reflecting boundary condition

(3.3.4) -R(t,q)+Rt,q(1-R(t,q))-- (t,q)=O

for all t-O and qf DQ', and initial condition

(3.3.5) R(O,q)=H(O,q)

for all qE Q.

We note that (3.3.3) represents a generalization of

Burger's equation.

-- si ianni a ommlilllllmil IW
i ll l
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The following theorem shows under sufficient smoothness

assumptions on the limit H of the occupation rate H( for

OC-> , that i coincides with the asymptotic occupation

rate R.

Theorem 3.3.6

If we assume the property

(3.3.7) HAF1C2

then we have for all (t,q)( [O,T]x-Q He eQLivlehice

(3.3.8) H(t,q)=R(t,q).

The proof of this assertion is given in Section 4.4.

We remark that the smoothness assumption (3.3.7) on

could be considerably weakened by an appropriate

functional analytic formulation of the nonlinear partial

differential equation (3.3.3)-(3.3.5). For instance such a

weaker formulation could be based on methods described in

/2/ or / 6 /. Here we have chosen rather strong smoothness

assumptions on R and H to derive the dynamics described by

the equations (3.3.3) - (3.3.5) without technical

difficulties in the formulation and prove of Theorem

3.3.6. It remains an interesting problem to derive these

equations under much weaker assumptions. 0

Finally, we remark that the result could be generalized

!
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to the case of a nonisotropic probability density p and a

general regular domain Q.

3.4. Continuity equation

For better interpretation of the asymptotic occupation

rate R together with other physical quantities as particle

concentration and current density vector we rewrite the

equation (3.3.3) in the form of a continuity equation.

Let us introduce for all t O and q f the particle

concentration

(3.4.1) F(t,q)=R(t,q) ;- (q)

and the vector function

(3.4.2) j (t,q)=- -(q) (grad R(t,q)

+R(t,q) (1-R(t,q)) grad (t,q))

which we will call current density vector.

Then it follows from (3.3.3) the continuity equation

(3.4.3)- (tq)= -div(j(t,q))

+(; (q)- y (t,q) )-W+(q)-_? (tq)w (q)

for all t>O and qc Q, with reflecting boundary condition

(3.4.4) j(t,q).' =0

for all t*-O and qc'Q', and initial condition

• --. . lli I i i-ilil Immnanln N~lllg~imm m I0
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(3. 4. 5) (0, q)=H 0, q) .(q)

for al qI Q.

The above continuity equation relates the time derivative

of the particle concentration with the current density

vector.

We can also write the current density vector in the form

(3.4.-6) j (t,q)=

-a .- Aq)R(t'q) (1-Rlt'q) lgrad ((~) tq)

for all tO, qfQ, where

(3.4.7) (t,q) =ln (R (t,q) (1-R (t,q)) - 1

is the so called chemical potential at t-O and qC Q.

One notes that the current density vector shows into the

opposite direction of the gradient of the sum of the

chemical and static potential.

The length of the current density vector is proportional

to the so called conductivity

(3.4.8)3(t,q)= b (q)R(t,q) (1-R(t,q))

at t-O and qC Q, which contains a logistic nonlinearity

with respect to the asymptotic occupation rate R. The
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conductivity reaches its maximum at an asymptotic

occupation rate with value R=1/2 which corresponds to the

value of the chemical potential I =0. The logistic

nonlinearity of the conductivity is caused by the

interaction of the particles within the exclusion

dynamics, where jumps to occupied sites are excluded. As

important result of this nonlinearity it follows 
that the

particle concentration is bounded by the concentration of

sites and we have for all t!O and qC 0

(3.4.9) 0 F(tq) (q).

Finally, we note that there is no current through the

boundary dQ' what is natural in our model. It seems that

the continuity equation (3.4.3)-(3.4.5) can be used to

model important transport processes with birth and death

effects in physics, chemistry, biology, social sciences

and other fields.

4. Proofs

4.1 Properties of the probability density

For easier reference we list some properties of the

probability density

p(q)=exp{- q( expi- Jul du)

introduced in (3.1.4). A

p is symmetric and we have for all qc R that

S
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(4.1.1) p(q)=p(-q))

For all i," { 1,...,d 3 one obtains by the use of the

abbreviation (=+2
pp ((u-q)) 0

the following moment properties

(4.1.2) Lrn J(u.-q-)p du=O for q* Q'C - .0 a

(4.1.3) Lr f (u -qi)p du=d (q) for q )Q,

b if qc Q and i=k
(4.1.4) Lim /(u -qi)(u,-q )p du= 0 if qc Q and i#k

OC ->o"f Cik (q) if qf)Q
and

(4.1.5) Lim / fu-qI] p du= 0 for all qc Q and 13,4,....
Cw- -- > 0

where b is a fixed bounded positive constant depending on

the dimension d and it holds for di and c i. the estimate

(4.1.6) cI .k (q)l +-d1  (q)

for all qct .

4.2. Some preparations

For all o E (0,1), tF f OT ] and q6 0 we define the

function

(4.2.1) Aot(t,q)=H (t,q) (1-Ht(t ,q) E [0,

and it follows with (3.2.4) that

(4.2.2) H (tq)=A (t,q)-Tr (t,q)(I+A-Ft,q)T (t,q)) fI,1- aej

Now, we get from (4.2.1) with the estimate in (4.2.2) and

the boundedness of-r because of (3.1.8) and (3.1.9) also

0
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an estimate for A with

(4.2.3) A (t,q) E [7i '2 1
and

(4.2.4) O<

for all o(E(O,1), t-CO,T] and qEQ.

With the notation (4.2.1) and the explicit form of the

local jump intensity w t in (3.1.7) we can write the

integro-differential equation (2.6.1) in the form

(4.2.5) - H, = (Ac (ttu)-Ac (t,q))BL(u)du+

for all o(0(C,1), t6 (O,TJ and qE with the abbreviations

(4.2.6) B=(l-H,(t,q))I1-H (t,u)) '(t,q)' T (t,u) p

and

(4.2.7) F =(1-H (t,q))7 (q)-H (t,q) w t (q).

To simplify our notation let us use also the following

abbrevi ations

f =f(q), (q); A=AO(tq) , H =H (tq) , R --H(tq),

=7(t,q), t= (t,q).

Further, we suppress the indication that we integrate over

the set 0.

Now, it follows from (4.2.5) and the symmetry of B for all

. . .. 0



0.. (0,1), t6 (0,Tj and fe : that

(4.2. 8)f!H ;IdJfjf(A -AV)E11WdL d+fFIdq

(f -f ) '(A-A )B ,dud q4-f FA1d

It holds the following continuity property for A.

Lemma 4.2.9

There exists a constant K3 e(O,-) such that for each

t c (0,7- and a(CO,I) we have

(4.2. 10) A -A ) p dudq -K

Proof

If we set in (4.2.8) f =A , then we obtain with (4.2.3),

(3.2.2), (4.2.7), (3.2.4) and the boundedness of W and w
t _w

that

(4.2.11) ff(A -A ) B dudq= -A (5tH +F 0)d,'K .

I u 2 1 1 1

Because of (4.2.6), (3.1.4), (3.2.4), (3.1.8) and (3.1.9)

we can conclude

i(A -q u qP"(K 2 ') P
(4.2.12) -A ) p dudq3IK"( ) K "

Using this result we obtain also an asymptotic continuity

property for H :

Lemma 4.2.13 0

For all te (0,T] we have

" I I I I I I mm ~ iI II I I I I I



(4.2.14) lim j(H -H ) u-ql p dudq-~r:.

Pr oof

FDY the u---: of 7L 24) (4. 2. 2) 1 . .8) , 1m (4..9) and

(4.1-5) it foo-is for all t. 6 (C, ]j th;t

(4.2.15) li m/(H -H )' u-q p dctdq

.. limff2 IH -H Iu-q p dudq

==imr)2UA I-,,- j + 1-1 1~ A~ A,) lu-q d cudq

0

= limffF'" Iq-ul pdiidq-'-]JK A -Aj I u-ql I pdudq

4c ->U

0 O+1.m V ((IA A.l (u-q)2 p du) dqdq)

li/(/ ( Af-A (u-q) p du)dq)

4.3. Proof of Theoren 3.2.6

We obtain from (4.2.8) with (4. 2. 1) f or al 1 -Zc(0,1)

t 4 ((0,T] , and f EC by symmetry arguments

(4.1) f 1f (i-H F ) q

J -()' fwI)H( P )H-,d1

H -, +I -IA
-(i-H )H p dudqd

I = o. o

I



I. I I *

f - - ) -)
+ Ip --H H d,_,d

+ -(1- )H.( -e p- - -

+Hp dudq

S f- ) -H,+ E H (1-H )+ (-(H H)

+R ( ,J+R-. , dudq

with

4 -- R K LA2L .

Now, we expand by the use of the Taylor formula the given

functions f, and aL , apply Lemma 4.2.13 and use the

property (4.1.5) that higher moments than the second

moment of p vanish asymptotically. Then it follows from

the ahove result with assumption (3.2.1) and the other

moment properties of p for all t( CO,TI and f C that

(4...3) 1= f (]::F(t,q)-il(O,q)), dq-flff E(l-T4(s,q))WSj'

-H(s,q)w S (q)IIIdqds

lim f fd (((tq)-Ho,(Cq) dq-J dqds)
.0,

l l I ~ I I III I I I -0



~~~~~~~ (TII I! 1/IJ ..

-lir 2-- H-

..- i i i1 --- "" -

d

1+ C- (ui -q))p dudqds.

12
We ot tht or-f we have for all q e. .9Q the boundary

cond i-tfi-on

f =0).

Now, by the use of the moment properties of p A 4.1,2)

(4.1.5) and assumption (3.2.1) it follows from (4.3.3) for
all tttO,T1 and f C I the assertion I

(4.3.4) I= b -(grad f ) -(grad ) -H

+(grad f :) -7 1 (grad,? )

+ ;_(dv grad f( ) )p H dqds

=o'- [dv.3 grad f

I (--H grad f grad dqds.

4.4. Proof of Theorem 3.3-6

From Theorem 3.2.6 we obtain for all t ( ,T] and f

the quat ion

Al

f -

$i
........ ow,- byIl l th us oflll th moen prprte of p (4.1I



(4.4 4. 1 c q

H id v(; grad f.

-l (grad f. )-(gradI) dq

-H f l J,77 q .I

and it follows by partial integration

1I, ! d f

V= "' (-f) f (-H

L T- ci t d ,

- I- f (--d

where we used the abbreviations

(q q q

and

Eecause of (3.2.5) we can write for all t E((:,T] and f LC C

(4.4.2) V~f4A (grad f~ )- (grad H +-H I --H gr ad~ )dq.

Again by partial integration we get from (4.4-2) together

wi th (4. 4. 1) for allI t t (0,T ] and fE f: the result

V= / 0



(4.A.3) Y= f -- - (.- W (q)-q w (q) d q

= - I dl (grad H +H - grad d q

+) f7 AT(A H +i-H I --- )dq.
II-

Because the above equation holds for all fE C and we assu, _t

that H is from C' it follows for H with (3.1.4) and

(3.3.2) the partial differential equation

(4.4.4) (T H -[__ )t q)Hwq

div( _i (grad H +H (1-H )gradl))

for all qc 0 and t 6 (C0,Tj with the boundary condition

(4. 4.5) D- a

for all qc)Q' and t fO,T].

Now, we can conclude from (4.4.4) and (4.4.5) that H is

the unique solution of the equations (3.3.3)-(3.3.5) which

means for all t f (O T] and q 6 that

(4.4.6) H(t,q)=R(t,q) .
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